深度学习体系结构已在不同领域(例如医学,农业和安全)取得了有希望的结果。但是,由于培训过程中所需的大型收藏品,在许多实际应用中使用这些强大的技术变得具有挑战性。几项作品通过提出可以更少学习更多知识的策略,例如弱和半监督的学习方法来克服它来克服它。由于这些方法通常无法解决对对抗性例子的记忆和敏感性,因此本文介绍了三种深度度量学习方法与混音相结合,以实现不完整的监督场景。我们表明,在这种情况下,指标学习中的一些最新方法可能无法很好地工作。此外,所提出的方法在不同数据集中的表现优于大多数。
translated by 谷歌翻译
Plastic shopping bags that get carried away from the side of roads and tangled on cotton plants can end up at cotton gins if not removed before the harvest. Such bags may not only cause problem in the ginning process but might also get embodied in cotton fibers reducing its quality and marketable value. Therefore, it is required to detect, locate, and remove the bags before cotton is harvested. Manually detecting and locating these bags in cotton fields is labor intensive, time-consuming and a costly process. To solve these challenges, we present application of four variants of YOLOv5 (YOLOv5s, YOLOv5m, YOLOv5l and YOLOv5x) for detecting plastic shopping bags using Unmanned Aircraft Systems (UAS)-acquired RGB (Red, Green, and Blue) images. We also show fixed effect model tests of color of plastic bags as well as YOLOv5-variant on average precision (AP), mean average precision (mAP@50) and accuracy. In addition, we also demonstrate the effect of height of plastic bags on the detection accuracy. It was found that color of bags had significant effect (p < 0.001) on accuracy across all the four variants while it did not show any significant effect on the AP with YOLOv5m (p = 0.10) and YOLOv5x (p = 0.35) at 95% confidence level. Similarly, YOLOv5-variant did not show any significant effect on the AP (p = 0.11) and accuracy (p = 0.73) of white bags, but it had significant effects on the AP (p = 0.03) and accuracy (p = 0.02) of brown bags including on the mAP@50 (p = 0.01) and inference speed (p < 0.0001). Additionally, height of plastic bags had significant effect (p < 0.0001) on overall detection accuracy. The findings reported in this paper can be useful in speeding up removal of plastic bags from cotton fields before harvest and thereby reducing the amount of contaminants that end up at cotton gins.
translated by 谷歌翻译
Boll Weevil(Anthonomus Grandis L.)是一种严重的害虫,主要以棉花为食。由于亚热带气候条件,在德克萨斯州的下里奥格兰德山谷等地方,棉花植物可以全年生长,因此,收获期间上一个季节的剩下的种子可以在玉米中的旋转中继续生长(Zea Mays L.)和高粱(高粱双色L.)。这些野性或志愿棉花(VC)植物到达Pinhead平方阶段(5-6叶阶段)可以充当Boll Weevil Pest的宿主。得克萨斯州的鲍尔象鼻虫根除计划(TBWEP)雇用人们在道路或田野侧面生长的风险投资和消除旋转作物的田间生长,但在田野中生长的植物仍未被发现。在本文中,我们证明了基于您的计算机视觉(CV)算法的应用,仅在三个不同的生长阶段(V3,V6)(V3,V6)中检测出在玉米场中生长的VC植物,以检测在玉米场中生长的VC植物的应用。使用无人飞机系统(UAS)遥感图像。使用Yolov5(S,M,L和X)的所有四个变体,并根据分类精度,平均平均精度(MAP)和F1得分进行比较。发现Yolov5s可以在玉米的V6阶段检测到最大分类精度为98%,地图为96.3%,而Yolov5s和Yolov5m的地图为96.3%,而Yolov5m的分类精度为85%,Yolov5m和Yolov5m的分类准确性最小,而Yolov5L的分类精度最少。在VT阶段,在尺寸416 x 416像素的图像上为86.5%。开发的CV算法有可能有效地检测和定位在玉米场中间生长的VC植物,并加快TBWEP的管理方面。
translated by 谷歌翻译
为了控制棉花场中的鲍尔象鼻虫(Anthonomus Grandis L.)害虫重新感染,目前的志愿棉花(VC)(VC)(gossypium hirsutum L.)植物检测玉米(Zea Mays L.)和Sorghum等旋转作物中的植物检测(高粱双色L.)涉及在田野边缘的手动田地侦察。这导致许多风险植物在田野中间生长仍未被发现,并继续与玉米和高粱并肩生长。当他们到达Pinhead平方阶段(5-6片叶子)时,它们可以充当鲍尔维尔虫害的宿主。因此,需要检测,定位,然后精确地用化学物质进行斑点。在本文中,我们介绍了Yolov5M在放射线和伽马校正的低分辨率(1.2兆像素)的多光谱图像中的应用,以检测和定位在康沃尔场的流苏中间(VT)生长阶段生长的VC植物。我们的结果表明,可以以平均平均精度(地图)为79%,分类精度为78%,大小为1207 x 923像素的分类精度为78%,平均推理速度在NVIDIA上的平均推理速度接近47帧(FPS) NVIDIA JETSON TX2 GPU上的Tesla P100 GPU-16GB和0.4 fps。我们还证明了基于开发的计算机视觉(CV)算法的定制无人飞机系统(UAS)的应用应用程序应用程序,以及如何将其用于近乎实时检测和缓解玉米领域中VC植物的近乎实时检测和缓解为了有效地管理鲍尔象鼻虫害虫。
translated by 谷歌翻译
超越地球轨道的人类空间勘探将涉及大量距离和持续时间的任务。为了有效减轻无数空间健康危害,数据和空间健康系统的范式转移是实现地球独立性的,而不是Earth-Reliance所必需的。有希望在生物学和健康的人工智能和机器学习领域的发展可以解决这些需求。我们提出了一个适当的自主和智能精密空间健康系统,可以监控,汇总和评估生物医学状态;分析和预测个性化不良健康结果;适应并响应新累积的数据;并提供对其船员医务人员的个人深度空间机组人员和迭代决策支持的预防性,可操作和及时的见解。在这里,我们介绍了美国国家航空航天局组织的研讨会的建议摘要,以便在太空生物学和健康中未来的人工智能应用。在未来十年,生物监测技术,生物标志科学,航天器硬件,智能软件和简化的数据管理必须成熟,并编织成精确的空间健康系统,以使人类在深空中茁壮成长。
translated by 谷歌翻译
空间生物学研究旨在了解太空飞行对生物的根本影响,制定支持深度空间探索的基础知识,最终生物工程航天器和栖息地稳定植物,农作物,微生物,动物和人类的生态系统,为持续的多行星寿命稳定。要提高这些目标,该领域利用了来自星空和地下模拟研究的实验,平台,数据和模型生物。由于研究扩展到低地球轨道之外,实验和平台必须是最大自主,光,敏捷和智能化,以加快知识发现。在这里,我们介绍了由美国国家航空航天局的人工智能,机器学习和建模应用程序组织的研讨会的建议摘要,这些应用程序为这些空间生物学挑战提供了关键解决方案。在未来十年中,将人工智能融入太空生物学领域将深化天空效应的生物学理解,促进预测性建模和分析,支持最大自主和可重复的实验,并有效地管理星载数据和元数据,所有目标使生活能够在深空中茁壮成长。
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
translated by 谷歌翻译
In the Earth's magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.
translated by 谷歌翻译
Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. To the best of our knowledge, this is among the first attempts to study the complex heterogeneous progression of LLD based on task-oriented and handcrafted MRI features. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
translated by 谷歌翻译